Bmp6 expression can be regulated independently of liver iron in mice

PLoS One. 2014 Jan 13;9(1):e84906. doi: 10.1371/journal.pone.0084906. eCollection 2014.

Abstract

The liver is the primary organ for storing iron and plays a central role in the regulation of body iron levels by secretion of the hormone Hamp1. Although many factors modulate Hamp1 expression, their regulatory mechanisms are poorly understood. Here, we used conditional knockout mice for the iron exporter ferroportin1 (Fpn1) to modulate tissue iron in specific tissues in combination with iron-deficient or iron-rich diets and transferrin (Tf) supplementation to investigate the mechanisms underlying Hamp1 expression. Despite liver iron overload, expression of bone morphogenetic protein 6 (Bmp6), a potent-stimulator of Hamp1 expression that is expressed under iron-loaded conditions, was decreased. We hypothesized that factors other than liver iron must play a role in controlling Bmp6 expression. Our results show that erythropoietin and Tf-bound iron do not underlie the down-regulation of Bmp6 in our mice models. Moreover, Bmp6 was down-regulated under conditions of high iron demand, irrespective of the presence of anemia. We therefore inferred that the signals were driven by high iron demand. Furthermore, we also confirmed previous suggestions that Tf-bound iron regulates Hamp1 expression via Smad1/5/8 phosphorylation without affecting Bmp6 expression, and the effect of Tf-bound iron on Hamp1 regulation appeared before a significant change in Bmp6 expression. Together, these results are consistent with novel mechanisms for regulating Bmp6 and Hamp1 expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anemia, Iron-Deficiency / genetics
  • Anemia, Iron-Deficiency / pathology
  • Animals
  • Bone Morphogenetic Protein 6 / genetics*
  • Bone Morphogenetic Protein 6 / metabolism
  • Cation Transport Proteins / metabolism
  • Down-Regulation / genetics
  • Enterocytes / metabolism
  • Enterocytes / pathology
  • Ferroportin
  • Gene Expression Regulation*
  • Hepatocytes / metabolism
  • Hepatocytes / pathology
  • Hepcidins / metabolism
  • Iron / metabolism*
  • Liver / metabolism*
  • Macrophages / metabolism
  • Macrophages / pathology
  • Mice
  • Serum / metabolism
  • Signal Transduction / genetics
  • Smad Proteins / metabolism
  • Transferrin / metabolism

Substances

  • Bmp6 protein, mouse
  • Bone Morphogenetic Protein 6
  • Cation Transport Proteins
  • Hamp protein, mouse
  • Hepcidins
  • Smad Proteins
  • Transferrin
  • Ferroportin
  • Iron