κ Opioid receptor ligands regulate angiogenesis in development and in tumours

Br J Pharmacol. 2015 Jan;172(2):268-76. doi: 10.1111/bph.12573. Epub 2014 Jul 1.

Abstract

Opioid systems mainly regulate physiological functions such as pain, emotional tone and reward circuitry in neural tissues (brain and spinal cord). These systems are also found in extraneural tissues (ganglia, gut, spleen, stomach, lung, pancreas, liver, heart, blood and blood vessels), and recent studies have elucidated their roles in various organs. The current review focuses on the roles of opioid systems in blood vessels, especially angiogenesis, during development and tumour malignancy. The balance between endogenous activators and inhibitors of angiogenesis delicately maintains a normally quiescent vasculature to sustain homeostasis. Disturbance of this balance causes pathogenic angiogenesis and, especially in tumours, several activators such as VEGF are highly expressed in the tumour microenvironment and strongly induce tumour angiogenesis, the so-called angiogenic switch. Recently, we demonstrated that κ opioid receptor agonists function as anti-angiogenic factors, which impede the angiogenic switch, in vascular development and tumour angiogenesis by inhibiting the expression of receptors for VEGF. In clinical medicine, angiogenesis inhibitors that target VEGF signalling such as bevacizumab are used as anti-cancer drugs. Although therapies that inhibit tumour angiogenesis have been highly successful for tumour therapy, most patients eventually develop resistance to this anti-angiogenic therapy. Thus, we must identify novel targets for anti-angiogenic agents to sustain inhibition of angiogenesis for tumour therapy. The regulation of responses to κ opioid receptor ligands could be useful for controlling vascular formation under physiological conditions and in cancers, and thus could offer therapeutic benefits beyond the relief of pain.

Linked articles: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.

Keywords: angiogenesis; cancer therapy; embryonic stem cells; endothelial cells; opioid; tumour.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Angiogenesis Inhibitors / pharmacology
  • Angiogenesis Inhibitors / therapeutic use
  • Animals
  • Humans
  • Ligands
  • Neoplasms / drug therapy
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Neovascularization, Pathologic / drug therapy
  • Neovascularization, Pathologic / metabolism*
  • Neovascularization, Physiologic / physiology*
  • Receptors, Opioid, kappa / physiology*

Substances

  • Angiogenesis Inhibitors
  • Ligands
  • Receptors, Opioid, kappa