The tumor necrosis factor superfamily (TNFSF) consists of more than 20 members that can modulate cellular and immunological functions, including cell survival and the stimulation of an inflammatory response. Many TNF superfamily members display potent anticancer activity when used as recombinant proteins in vitro and in vivo. While TNF, TRAIL and FasL have already been used as payloads in antibody-based pharmacodelivery strategies, most TNF superfamily members have not yet been investigated as antibody payloads. Here, we report the cloning, production and characterization of eight novel antibody fusion proteins based on CD40L, FasL, TRAIL, LiGHT, VEGI, lymphotoxin alpha, lymphotoxin beta and lymphotoxin alpha1/beta2. The monoclonal antibody F8 was chosen as fusion partner of proven tumor targeting performance, which recognizes the alternatively-spliced EDA domain of fibronectin, a marker of angiogenesis. A quantitative biodistribution analysis performed with radioiodinated protein preparations in tumor-bearing mice revealed that TRAIL and lymphotoxin alpha1/beta2 were able to selectively accumulate at the tumor site, while all other members of the TNF superfamily abrogated the selective tumor targeting performance of the parental antibody or accumulated also in healthy tissues. The study indicates that even cytokines, which are closely related in terms of structure and function, may have a substantially different impact on the biodistribution and functional properties of the corresponding fusions with disease-homing antibodies.
Keywords: F8 antibody; FasL; TRAIL; Tumor necrosis factor superfamily; Vascular targeting.
Copyright © 2013 Elsevier B.V. All rights reserved.