Background: Patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) frequently relapse on imatinib with acquisition of BCR-ABL kinase domain (KD) mutations. To analyze the changes that second-generation tyrosine kinase inhibitors (TKIs) have brought in mutation frequency and type, a database review was undertaken of the results of all the BCR-ABL KD mutation analyses performed in the authors' laboratory from January 2004 to January 2013.
Methods: Interrogation of the database retrieved 450 mutation analyses in 272 patients with Ph+ ALL. Prescreening of samples was performed with denaturing high-performance liquid chromatography (D-HPLC), followed by direct sequencing of D-HPLC-positive cases.
Results: BCR-ABL KD mutations were detected in 70% of imatinib-resistant patients, with T315I, E255K, and Y253H mutations accounting for 75% of cases. Seventy-eight percent of the patients reported to be resistant to second-generation TKIs after imatinib failure were positive for mutations, and 58% of them had multiple mutations. Analysis of patients relapsing on dasatinib revealed a newly acquired T315I mutation in almost two-thirds of the cases. Direct sequencing detected no mutations at diagnosis, even in patients who relapsed after a few months.
Conclusions: Second-generation TKIs ensure a more rapid debulking of the leukemic clone and have much fewer insensitive mutations, but long-term disease control remains a problem, and the T315I mutation is revealed to be an even more frequent enemy. BCR-ABL KD mutation screening of patients with Ph+ ALL who are receiving imatinib or second-generation TKIs would be a precious ally for timely treatment optimization. In contrast, the clinical usefulness of conventional direct sequencing at diagnosis seems to be very low. American Cancer Society.
Keywords: BCR-ABL mutations; acute lymphoblastic leukemia; dasatinib; imatinib; resistance.
© 2013 American Cancer Society.