It was shown that the proteasome inhibitor, bortezomib, administered immediately following allogeneic bone marrow transplantation resulted in marked inhibition of acute graft-versus-host disease (aGVHD), with retention of graft-versus-tumor effects. However, continuous bortezomib administration resulted in significant acceleration of graft-versus-host disease-dependent morbidity. We carried out studies to dissect the mechanisms of aggravated aGVHD caused by delayed bortezomib administration. First, we demonstrated that IL-1β was critically involved, and the subsequent aGVHD could be alleviated by IL-1β blockade. Bortezomib treatment after dendritic cell (DC) activation resulted in drastically elevated IL-1β production, whereas bortezomib treatment before DC activation inhibited IL-1β production, suggesting that the timing of bortezomib administration significantly affected IL-1β production by DCs. We further demonstrated that delayed administration of bortezomib accelerated aGVHD through TLR4 signaling. Because the LPS levels were much lower with reduced-intensity conditioning compared with high-dose irradiation, the accelerated graft-versus-host disease-dependent morbidity with delayed bortezomib administration could be rescued by reduced-intensity conditioning. Our studies suggested that TLR4 pathway activation and delayed bortezomib administration amplified the production of IL-1β and other inflammatory cytokines, which resulted in accelerated aGVHD-dependent morbidity. These results indicated that decreased toxicity of continuous bortezomib administration could be achieved by reduced-intensity conditioning or by inhibiting IL-1β.