The susceptibility of bioprosthetic heart valve leaflets to oxidation

Biomaterials. 2014 Feb;35(7):2097-102. doi: 10.1016/j.biomaterials.2013.11.045. Epub 2013 Dec 18.

Abstract

The clinical use of bioprosthetic heart valves (BHV) is limited due to device failure caused by structural degeneration of BHV leaflets. In this study we investigated the hypothesis that oxidative stress contributes to this process. Fifteen clinical BHV that had been removed for device failure were analyzed for oxidized amino acids using mass spectrometry. Significantly increased levels of ortho-tyrosine, meta-tyrosine and dityrosine were present in clinical BHV explants as compared to the non-implanted BHV material glutaraldehyde treated bovine pericardium (BP). BP was exposed in vitro to oxidizing conditions (FeSO4/H2O2) to assess the effects of oxidation on structural degeneration. Exposure to oxidizing conditions resulted in significant collagen deterioration, loss of glutaraldehyde cross-links, and increased susceptibility to collagenase degradation. BP modified through covalent attachment of the oxidant scavenger 3-(4-hydroxy-3,5-di-tert-butylphenyl) propyl amine (DBP) was resistant to all of the monitored parameters of structural damage induced by oxidation. These results indicate that oxidative stress, particularly via hydroxyl radical and tyrosyl radical mediated pathways, may be involved in the structural degeneration of BHV, and that this mechanism may be attenuated through local delivery of antioxidants such as DBP.

Keywords: Antioxidant; Bioprosthesis; Calcification; Collagen; Heart valve; Oxidation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Bioprosthesis*
  • Cattle
  • Female
  • Heart Valve Prosthesis*
  • Humans
  • Male
  • Middle Aged
  • Oxidation-Reduction