III-V nanowire arrays: growth and light interaction

Nanotechnology. 2014 Jan 10;25(1):014015. doi: 10.1088/0957-4484/25/1/014015. Epub 2013 Dec 11.

Abstract

Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111)Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires.

Publication types

  • Research Support, Non-U.S. Gov't