Background: Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia.
Methods: To study the correlation between the levels of CD133 expression and the biology of breast-derived cells, CD133low and CD133high cell subpopulations isolated from triple negative MDA-MB-231 cells were compared in terms of malignant properties and protein expression.
Results: High expression of CD133 characterizes cells with larger adhesion area, lower proliferation rate and reduced migration speed, indicative of a less undifferentiated phenotype. Conversely, when compared with CD133low cells, CD133high cells show higher invasive capability and increased expression of proteins involved in metastasis and drug-resistance of breast tumors. Among the signalling proteins examined, PLC-β2 expression inversely correlates with the levels of CD133 and has a role in inducing the CD133high cells to CD133low cells conversion, suggesting that, in TNBC cells, the de-regulation of this PLC isoform is responsible of the switch from an early to a mature tumoral phenotype also by reducing the expression of CD133.
Conclusions: Since CD133 plays a role in determining the invasiveness of CD133high cells, it may constitute an attractive target to reduce the metastatic potential of TNBC. In addition, our data showing that the forced up-regulation of PLC-β2 counteracts the invasiveness of CD133-positive MDA-MB-231 cells might contribute to identify unexplored key steps responsible for the TNBC high malignancy, to be considered for potential therapeutic strategies.