Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape

Ecol Evol. 2013 Oct;3(12):4172-82. doi: 10.1002/ece3.787. Epub 2013 Sep 25.

Abstract

Phenotypic differentiation is often interpreted as a result of local adaptation of individuals to their environment. Here, we investigated the skull morphological differentiation in 11 populations of the white-footed mouse (Peromyscus leucopus). These populations were sampled in an agricultural landscape in the Montérégie region (Québec, Canada), at the northern edge of the distribution of the white-footed mouse. We found a strong pattern of phenotypic differentiation matching the genetic structure across these populations. Landscape fragmentation and the presence of geographic barriers, in particular north-south oriented rivers, contribute to this differentiation and modulate the pattern of rapid ongoing northward range expansion of the white-footed mouse in response to climate warming. We conclude that while large rivers and postglacial recolonization routes have shaped the current pattern of distribution and differentiation of white-footed mouse populations, further local differentiation is occurring, at the scale of the landscape. We posit that the northern expansion of the white-footed mouse is achieved through successive independent founder events in a fragmented landscape at the northern range edge of the species. The phenotypic differentiation we observe is thus a result of a number of mechanisms operating at different spatial and temporal scales.

Keywords: Climate change; morphometrics; range shift; white-footed mouse.