This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.
Keywords: Circadian process; Clinical phenomenology; Homeostatic; Phénoménologie clinique; Processus circadien; Processus homéostatique; Regulation; Régulation; Sleep; Sommeil.
Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.