Scalable and genetically stable recombinant adeno-associated virus (rAAV) production systems combined with facile adaptability for an extended repertoire of AAV serotypes are required to keep pace with the rapidly increasing clinical demand. For scalable high-titer production of the full range of rAAV serotypes 1-12, we developed OneBac, consisting of stable insect Sf9 cell lines harboring silent copies of AAV1-12 rep and cap genes induced upon infection with a single baculovirus that also carries the rAAV genome. rAAV burst sizes reach up to 5 × 10(5) benzonase-resistant, highly infectious genomic particles per cell, exceeding typical yields of current rAAV production systems. In contrast to recombinant rep/cap baculovirus strains currently employed for large-scale rAAV production, the Sf9rep/cap cell lines are genetically stable, leading to undiminished rAAV burst sizes over serial passages. Thus, OneBac combines full AAV serotype options with the capacity for stable scale-up production, the current bottleneck for the transition of AAV from gene therapy trials to routine clinical treatment.