Field-effect transistors (FETs) based on semiconducting nanowires are the most fundamental electronic elements for exploring charge transport as well as possible applications in functional nanoelectronics. Here, we report the effect of different gate dielectrics on the electrical performance of SnO2 nanowire FETs. By using solid-electrolytes with large electric-double-layer (EDL) capacitance as gate dielectrics, both low-voltage operation and high gating efficiency can be obtained. Electrical transport measurements indicate that the nanowire FETs gated by solid-electrolytes show improved electrical performances in terms of on-current, sub-threshold swing, and mobility, in comparison to those gated by traditional thermally grown dielectrics. The observed performance improvement is possibly due to the reduction of the contact-resistance and the Schottky barrier at the semiconductor/metal junctions.