Objective: The enamel matrix derivative (EMD) has a positive effect on the proliferation of human periodontal ligament cells and the healing of periodontal tissues. The aim of this study was to evaluate the effects of EMD on the proliferation and differentiation of human dental pulp cells (hDPCs) in vitro.
Methods: hDPCs were isolated from human impacted third molars and cultured in vitro. After treatment with100μg/mL EMD, the proliferation of hDPCs was determined by a cell counting kit 8 (CCK8) assay. After incubation in EMD osteogenic induction medium for 14 days, the osteogenic differentiation of hDPCs was evaluated by alkaline phosphatase (ALP) activity, alizarin staining and the expression of osteogenesis-related genes.
Results: The EMD osteogenic induction medium enhanced the proliferation of hDPCs. After osteogenic induction, EMD increased the osteogenic potential of hDPCs, as measured by alkaline phosphatase activity and calcium accumulation; the expression levels of osteogenesis-related genes, such as ALP, DSPP, BMP, and OPN were also upregulated. In addition, the expression levels of odontogenesis-related transcription factors Osterix and Runx2 were upregulated.
Conclusions: EMD could enhance the mineralization of hDPSCs upregulated the expression of markers for odontoblast/osteoblast-like cells. Further studies are required to determine if EMD can improve pulp tissue repair and regeneration.
Keywords: Dental pulp cells; Differentiation; Enamel matrix derivative; Odontogenesis.
Copyright © 2013. Published by Elsevier Ltd.