Background: Aortic arch geometry is linked to abnormal blood pressure (BP) response to maximum exercise. This study aims to quantitatively assess whether aortic arch geometry plays a role in blood pressure (BP) response to exercise.
Methods: 60 age- and BSA-matched subjects--20 post-aortic coarctation (CoA) repair, 20 transposition of great arteries post arterial switch operation (ASO) and 20 healthy controls--had a three-dimensional (3D), whole heart magnetic resonance angiography (MRA) at 1.5 Tesla, 3D geometric reconstructions created from the MRA. All subjects underwent cardiopulmonary exercise test on the same day as MRA using an ergometer cycle with manual BP measurements. Geometric analysis and their correlation with BP at peak exercise were assessed.
Results: Arch curvature was similarly acute in both the post-CoA and ASO cases [0.05 ± 0.01 vs. 0.05 ± 0.01 (1/mm/m²); p = 1.0] and significantly different to that of normal healthy controls [0.05 ± 0.01 vs. 0.03 ± 0.01 (1/mm/m²), p < 0.001]. Indexed transverse arch cross sectional area were significantly abnormal in the post-CoA cases compared to the ASO cases (117.8 ± 47.7 vs. 221.3 ± 44.6; p < 0.001) and controls (117.8 ± 47.7 vs. 157.5 ± 27.2 mm²; p = 0.003). BP response to peak exercise did not correlate with arch curvature (r = 0.203, p = 0.120), but showed inverse correlation with indexed minimum cross sectional area of transverse arch and isthmus (r = -0.364, p = 0.004), and ratios of minimum arch area/ descending diameter (r = -0.491, p < 0.001).
Conclusion: Transverse arch and isthmus hypoplasia, rather than acute arch angulation plays a role in the pathophysiology of BP response to peak exercise following CoA repair.