A comprehensive survey of small-molecule binding pockets in proteins

PLoS Comput Biol. 2013 Oct;9(10):e1003302. doi: 10.1371/journal.pcbi.1003302. Epub 2013 Oct 24.

Abstract

Many biological activities originate from interactions between small-molecule ligands and their protein targets. A detailed structural and physico-chemical characterization of these interactions could significantly deepen our understanding of protein function and facilitate drug design. Here, we present a large-scale study on a non-redundant set of about 20,000 known ligand-binding sites, or pockets, of proteins. We find that the structural space of protein pockets is crowded, likely complete, and may be represented by about 1,000 pocket shapes. Correspondingly, the growth rate of novel pockets deposited in the Protein Data Bank has been decreasing steadily over the recent years. Moreover, many protein pockets are promiscuous and interact with ligands of diverse scaffolds. Conversely, many ligands are promiscuous and interact with structurally different pockets. Through a physico-chemical and structural analysis, we provide insights into understanding both pocket promiscuity and ligand promiscuity. Finally, we discuss the implications of our study for the prediction of protein-ligand interactions based on pocket comparison.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites*
  • Computational Biology
  • Databases, Protein
  • Ligands
  • Models, Molecular*
  • Protein Binding
  • Protein Conformation
  • Proteins / chemistry*
  • Proteins / metabolism*

Substances

  • Ligands
  • Proteins