The three mutator strains ana (r)-8, ana (r)-14, and diu (r)-301 were shown to produce respiratory deficient mutants at different rates. The frequency of respiratory deficient mutants in a culture could be increased by adding ethidium bromide. According to their cytochrome spectra and enzymatic activities they form three classes, namely mutants defective in cytochrome oxidase, in cytochrome b, and in both cytochromes. By restriction enzyme analysis of mitochondrial DNA from about 100 mutants, 22 deletion mutants were identified. The deletions, ranging from 50 to 1,500 base pairs were physically mapped. Deletions were localized in the genes coding for subunit 1 of cytochrome oxidase with its two introns, within the cytochrome b gene and its intron, and within the genes for subunits 2 and 3 of cytochrome oxidase. In several cases, where the physical mapping yielded ambiguous results, pairwise genetic crosses ruled out an overlap between two neighbouring deletions.Using these mitochondrial deletion mutants as tester strains, it was shown that only tetrad analysis and chemical haploidization, but not mitotic segregation analysis, allows a decision between chromosomal and mitochondrial inheritance of respiratory deficiency in Schizosaccharomyces pombe.