Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12887-94. doi: 10.1021/am403292x. Epub 2013 Dec 5.

Abstract

Transparent conductive oxides are emerging materials in several fields, such as photovoltaics, photoelectrochemistry, and optical biosensing. Their high chemical inertia, which ensured long-term stability on one side, makes challenging the surface modification of transparent conductive oxides; long-term robust modification, high yields, and selective surface modifications are essential prerequisite for any further developments. In this work, we aim at inducing chemical functionality on fluorine-doped tin oxide surfaces (one of the most inexpensive transparent conductive oxide) by means of electrochemical grafting of aryl diazonium cations. The grafted layers are fully characterized by photoemission spectroscopy, cyclic voltammetry, and atomic force microscopy showing linear correlation between surface coverage and degree of modification. The electrochemical barrier effect of modified surfaces was studied at different pH to characterize the chemical nature of the coating. We showed immuno recognition of biotin complex built onto grafted fluorine-doped tin oxides, which opens the perspective of integrating FTO samples with biological-based devices.

Publication types

  • Research Support, Non-U.S. Gov't