Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis

ACS Chem Biol. 2014 Jan 17;9(1):156-63. doi: 10.1021/cb400548s. Epub 2013 Nov 7.

Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) and is characterized by the destruction of myelin and axons leading to progressive disability. Peptide epitopes from CNS proteins, such as myelin oligodendrocyte glycoprotein (MOG), possess promising immunoregulatory potential for treating MS; however, their instability and poor bioavailability is a major impediment for their use clinically. To overcome this problem, we used molecular grafting to incorporate peptide sequences from the MOG35-55 epitope onto a cyclotide, which is a macrocyclic peptide scaffold that has been shown to be intrinsically stable. Using this approach, we designed novel cyclic peptides that retained the structure and stability of the parent scaffold. One of the grafted peptides, MOG3, displayed potent ability to prevent disease development in a mouse model of MS. These results demonstrate the potential of bioengineered cyclic peptides for the treatment of MS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Encephalomyelitis, Autoimmune, Experimental / prevention & control
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Models, Molecular
  • Molecular Sequence Data
  • Multiple Sclerosis / immunology
  • Multiple Sclerosis / prevention & control*
  • Myelin-Oligodendrocyte Glycoprotein / chemistry*
  • Myelin-Oligodendrocyte Glycoprotein / immunology
  • Myelin-Oligodendrocyte Glycoprotein / therapeutic use*
  • Peptides, Cyclic / chemistry*
  • Peptides, Cyclic / immunology
  • Peptides, Cyclic / therapeutic use*

Substances

  • Myelin-Oligodendrocyte Glycoprotein
  • Peptides, Cyclic