Fiber-based thermoelectric materials can conform to curved surfaces to form energy harvesting devices for waste heat recovery. Here we investigate the thermal conductivity in the axial direction of glass fibers coated with lead telluride (PbTe) nanocrystals using the self-heated 3ω method particularly at low frequency. While prior 3ω measurements on wire-like structures have only been demonstrated for high thermal conductivity materials, the present work demonstrates the suitability of the 3ω method for PbTe nanocrystal coated glass fibers where the low thermal conductivity and high aspect ratio result in a significant thermal radiation effect. We simulate the experiment using a finite-difference method that corrects the thermal radiation effect and extract the thermal conductivity of glass fibers coated by PbTe nanocrystals. The simulation method for radiation correction is shown to be generally much more accurate than analytical methods. We explore the effect of nanocrystal volume fraction on thermal conductivity and obtain results in the range of 0.50-0.93 W/mK near room temperature.