Graphene nanoribbons based electronic devices present many interesting physical properties. We designed and investigated the spin-dependent electron transport of a device configuration, which is easy to be fabricated, with an oxygen-terminated ZGNR central scatter region between two hydrogen-terminated ZGNR electrodes. According to the analysis based on non-equilibrium Green's function and density functional theory, the proposed device could maintain its good spin-filter performance (80% to 99%) and have a stable magneto resistance value up to 10(5)%. The spin dependent electron transmission spectrum and space-resolve density of states are employed to investigate the physical origin of the spin-polarized current and magneto resistance.