Sialic-acid binding lectin (SBL) isolated from bullfrog (Rana catesbeiana) oocytes is a multifunctional protein which has lectin activity, ribonuclease activity and cancer-selective antitumor activity. It has been reported that SBL induces apoptosis accompanied by rigid mitochondrial perturbation, which indicates mediation of the intrinsic pathway. However, the mechanism of the antitumor effect of SBL has not been fully elucidated. We report, here, that ER stress is evoked in SBL-treated cells. We show that caspase-4, an initiator caspase of ER stress-mediated apoptosis was activated, and inhibition of caspase-4 resulted in significant attenuation of apoptosis induced by SBL. We analyzed the precise mechanism of activation of the caspase cascade induced by SBL, and found that caspase-9 and -4 are activated upstream of activation of caspase-8. Further study revealed that SBL induces the mitochondrial and ER stress-mediated pathways independently. It is noteworthy that SBL can induce cancer-selective apoptosis by multiple apoptotic signaling pathways, and it can serve as a candidate molecule for anticancer drugs in a novel field.