In the present article, vertically aligned ZnO nanorod arrays were synthesized by an aqueous chemical growth (ACG) route on a fluoride doped tin oxide (FTO) coated glass substrate. These nanorods were further sensitized with cadmium sulfide (CdS) quantum dots (QDs) by a successive ionic layer adsorption and reaction (SILAR) technique. The synthesized CdS coated ZnO nanorods were characterized for their structural and morphological properties with X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). Finally, prepared CdS coated 1D ZnO photoelectrodes were tested for their photoelectrochemical performance. Our results show that the sample deposited after 40 SILAR cycles shows 5.61 mA cm(-2) short current density (JSC) with η = 1.61% power conversion efficiency.