Harvesting waste energy through electromechanical coupling in practical devices requires combining device design with the development of synthetic strategies for large-area controlled fabrication of active piezoelectric materials. Here, we show a facile route to the large-area fabrication of ZnO nanostructured arrays using commodity galvanized steel as the Zn precursor as well as the substrate. The ZnO nanowires are further integrated within a device construct and the effective piezoelectric response is deduced based on a novel experimental approach involving induction of stress in the nanowires through pressure wave propagation along with phase-selective lock-in detection of the induced current. The robust methodology for measurement of the effective piezoelectric coefficient developed here allows for interrogation of piezoelectric functionality for the entire substrate under bending-type deformation of the ZnO nanowires.