Application of carbon nanotubes layered on silicon wafer for the detection of breast cancer marker carbohydrate antigen 15-3 by immuno-polymerase chain reaction

J Mater Sci Mater Med. 2014 Jan;25(1):101-11. doi: 10.1007/s10856-013-5060-9. Epub 2013 Oct 1.

Abstract

A highly sensitive detection of breast cancer marker, carbohydrate antigen 15-3 (CA 15-3) by carbon nanotube (CNT) based immuno-polymerase chain reaction was reported. The study was aimed to develop a precise and sensitive method to diagnose breast cancer and its recurrence. The hydrofluoric acid (HF) treated silicon wafer layered with bundled CNT was used as the substrate. The surface was treated with HNO3/H2SO4 to graft carboxyl groups on the tips of CNT. Subsequently, polyoxyethylene bis-amine was grafted to conjugate anti human CA 15-3 antibodies. Water contact angle measurement, scanning electron microscope, Fourier transform infrared spectrometer, Raman spectrometer and sodium dodecyl sulfate polyacrylamide gel electrophoresis were employed to confirm the surface modification. The captured antibodies on the CNT were used to capture the target antigen CA 15-3 and the biotinylated secondary antibodies were subsequently bound with the target antigen. A bi-functional streptavidin was used to link biotinylated DNA to the biotinylated detection antibodies. The biotinylated target DNA was amplified by PCR, and then analyzed by agarose gel electrophoresis. The lower limit of detection of CA 15-3 by the proposed immuno-PCR system was 0.001 U/mL, which is extremely sensitive than the other bioanalytical techniques.

Publication types

  • Evaluation Study

MeSH terms

  • Antibodies, Immobilized
  • Biomarkers, Tumor / blood*
  • Biomarkers, Tumor / genetics
  • Breast Neoplasms / diagnosis*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / immunology
  • Female
  • Humans
  • Immunoassay / methods*
  • Microscopy, Electron, Scanning
  • Mucin-1 / blood*
  • Mucin-1 / genetics
  • Nanotubes, Carbon* / ultrastructure
  • Polymerase Chain Reaction / methods*
  • Silicon
  • Spectroscopy, Fourier Transform Infrared
  • Spectrum Analysis, Raman

Substances

  • Antibodies, Immobilized
  • Biomarkers, Tumor
  • Mucin-1
  • Nanotubes, Carbon
  • Silicon