Tendon/ligament injures are leading disabilities worldwide. The periodontal ligament (PDL) connects teeth to bone, and is comparable to a tendon/ligament-to-bone insertion. PDL-derived cells (PDLCs) express both osteo/cementogenesis and teno/ligamentogenesis genes. However, an efficient method to induce a tenogenic differentiation of PDLCs has not been thoroughly examined. Therefore, this study tested if growth/differentiation factors (GDFs) enhanced tenogenic characteristics of human PDLCs, as a potential cell source for tendon/ligament engineering. Results demonstrated recombinant GDF-5/GDF-7 inhibited alkaline phosphatase (ALP) activity of PDLCs from passage 3 to 6, while GDF-5 enhanced ALP in dental pulp-derived cells and mesenchymal stem cells. GDF-5 (particularly at 10 ng/ml concentration) induced high expression of both early (scleraxis) and mature (tenomodulin, aggrecan, collagen3) tenogenic genes in P4-6 PDLCs, while inhibiting expression of specific transcription-factors for osteogenic, chondrogenic and adipogenic differentiation. Exogenous GDFs might lead PDLCs being expanded in culture during several passages to highly useful cell source for tendon/ligament engineering.