Hidden T-linear scattering rate in Ba0.6K0.4Fe2As2 revealed by optical spectroscopy

Phys Rev Lett. 2013 Sep 13;111(11):117001. doi: 10.1103/PhysRevLett.111.117001. Epub 2013 Sep 10.

Abstract

The optical properties of Ba0.6K0.4Fe2As2 have been determined in the normal state for a number of temperatures over a wide frequency range. Two Drude terms, representing two groups of carriers with different scattering rates (1/τ), well describe the real part of the optical conductivity σ1(ω). A "broad" Drude component results in an incoherent background with a T-independent 1/τb, while a "narrow" Drude component reveals a T-linear 1/τn resulting in a resistivity ρn≡1/σ1n(ω→0) also linear in temperature. An arctan(T) low-frequency spectral weight is also strong evidence for a T-linear 1/τ. A comparison to other materials with similar behavior suggests that the T-linear 1/τn and ρn in Ba0.6K0.4Fe2As2 originate from scattering from spin fluctuations and hence that an antiferromagnetic quantum critical point is likely to exist in the superconducting dome.