Background: Our recent evidence showed that Toll like receptor 9 (TLR9) signaling could enhance the growth and metastatic potential of human lung cancer cells through repressing microRNA-7 (miR-7) expression. Human antigen R (HuR) has been involved in stabilizing multiple mRNAs in cellular biology. However, whether HuR also contributed to the altered expression of miR-7 in TLR9 signaling stimulated human lung cancer cells remains to be elucidated.
Methods: The expression of HuR in human lung cancer 95D cells treated with TLR9 agonist CpG Oligonucleotides (ODNs) was detected by Real-time PCR and Western blot assay. To explore the possible role of HuR on miR-7 expression, eukaryotic expression vector encoding HuR was transiently transfected into 95D cells and then the expression of miR-7 was detected by Real-time PCR assay. Moreover, RNA interference, western blot, Real-time PCR, MTT assay, BrdU labeling, invasion assay and scratch assay were employed to examine the disrupt effect of HuR on miR-7 expression in human lung cancer cells treated with CpG ODNs. Finally, inhibitors for PI3K, Akt or Erk respectively, and western blot were performed to explore the possible signaling pathway related to HuR expression in CpG ODNs treated human lung cancer cells.
Results: Our data showed that TLR9 agonist CpG ODNs could induce the expression of HuR in human lung cancer cells. Moreover, overexpression of HuR could reduce the expression of miR-7 in lung cancer cells. Notably, down-regulation of HuR using RNA interference restored miR-7 expression in CpG ODNs treated lung cancer cells, accompanied by enhanced growth and metastatic potential. Finally, CpG ODNs could induce HuR expression through Akt pathway.
Conclusion: Our findings indicated that HuR could act as regulator in regulating TLR9 signaling associated biological effect in human lung cancer cells, which might be helpful for the understanding of the potential role of HuR in tumor biology.