High quality carbon dots (C-dots) with down- and up-conversion fluorescence have been synthesized through low-temperature carbonization using sweet pepper as the carbon source. The C-dots with a quantum yield (QY) of 19.3% exhibit superior photophysical properties, for example, narrow and symmetric emission spectra, large stock shifts, resistance to photobleaching, and excitation-dependent fluorescence behavior. The excellent C-dots serve as useful fluorescent probes for hypochlorite (ClO(-)) detection by both down- and up-conversion fluorescence. Two consecutive linear ranges allow a wide determination of ClO(-) concentrations with a low detection limit of 0.05 μmol L(-1) and 0.06 μmol L(-1) (S/N = 3) for down- and up-conversion fluorescence measurements, respectively. The proposed detection method is advantageous because it is simple, sensitive, dual-signalling model and low-cost and has potential extensive applications in environmental and biological assays.