Objective: We measured the levels of mutant huntingtin (mtHtt) and total huntingtin (tHtt) in blood leukocytes from Prospective Huntington At-Risk Observational Study (PHAROS) subjects at 50% risk of carrying the Huntington disease mutation using a homogeneous time-resolved fluorescence (HTRF) assay to assess its potential as a biomarker.
Methods: Peripheral blood mononuclear cells from consenting PHAROS subjects were analyzed by HTRF using antibodies that simultaneously measured mtHtt and tHtt. mtHtt levels were normalized to tHtt, double-stranded DNA, or protein and analyzed according to cytosine-adenine-guanine repeat length (CAGn), demographics, predicted time to clinical onset or known time since clinical onset, and available clinical measures.
Results: From 363 assayed samples, 342 met quality control standards. Levels of mtHtt and mt/tHtt were higher in 114 subjects with expanded CAG repeats (CAG ≥ 37) compared with 228 subjects with nonexpanded CAG repeats (CAG <37) (p < 0.0001). Analysis of relationships to predicted time to onset or to phenoconversion suggested that the HTRF signal could mark changes during the Huntington disease prodrome or after clinical onset.
Conclusions: The HTRF assay can effectively measure mtHtt in multicenter sample sets and may be useful in trials of therapies targeting huntingtin.