Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy

Acta Biomater. 2013 Dec;9(12):9330-42. doi: 10.1016/j.actbio.2013.08.015. Epub 2013 Aug 17.

Abstract

An amphiphilic anionic copolymer, methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine) (mPEG-b-P(Glu-co-Phe)), with three functionalized domains, was synthesized and used as a nanovehicle for cationic anticancer drug doxorubicin hydrochloride (DOX·HCl) delivery via electrostatic interactions for cancer treatment. The three domains displayed distinct functions: PEG block chain for prolonged circulation; poly(phenylalanine) domain for stabilizing the nanoparticle construct through hydrophobic/aromatic interactions; and the poly(glutamic acid) domain for providing electrostatic interactions with the cationic drug to be loaded. The copolymer could self-assemble into micellar-type nanoparticles, and DOX was successfully loaded into the interior of nanoparticles by simple mixing of DOX·HCl and the copolymer in the aqueous phase. DOX-loaded mPEG-b-P(Glu-co-Phe) nanoparticles (DOX-NP) had a superior drug-loading content (DLC) (21.7%), a high loading efficiency (almost 98%) and a pH-triggered release of DOX. The size of DOX-NP was ∼140 nm, as determined by dynamic light scattering measurements and transmission electron microscopy. In vitro assays showed that DOX-NP exhibited higher cell proliferation inhibition and higher cell uptake in A549 cell lines compared with free DOX·HCl. Maximum tolerated dose (MTD) studies showed that DOX-NP demonstrated an excellent safety profile with a significantly higher MTD (15 mg DOX kg(-1)) than that of free DOX·HCl (5 mg DOX kg(-1)). The in vivo studies on the subcutaneous non-small cell lung cancer (A549) xenograft nude mice model confirmed that DOX-NP showed significant antitumor activity and reduced side effects, and then enhanced tumor accumulation as a result of the prolonged circulation in blood and the enhanced permeation and retention effect, compared with free DOX, indicating its great potential for cancer therapy.

Keywords: Doxorubicin hydrochloride; Drug delivery; Electrostatic interaction; Poly(amino acids); pH sensitive.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Cell Death / drug effects
  • Cell Line, Tumor
  • Doxorubicin / pharmacology
  • Doxorubicin / therapeutic use*
  • Drug Delivery Systems*
  • Endocytosis / drug effects
  • Glutamic Acid / analogs & derivatives
  • Glutamic Acid / chemistry
  • Humans
  • Hydrogen-Ion Concentration
  • Immunohistochemistry
  • Magnetic Resonance Spectroscopy
  • Male
  • Maximum Tolerated Dose
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Nanoparticles / chemistry*
  • Nanoparticles / ultrastructure
  • Neoplasms / drug therapy*
  • Neoplasms / pathology
  • Peptides / chemistry*
  • Polyethylene Glycols / chemistry
  • Solutions
  • Surface-Active Agents / chemistry*
  • Treatment Outcome
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Peptides
  • Solutions
  • Surface-Active Agents
  • monomethoxypolyethylene glycol-glutamic acid
  • Glutamic Acid
  • Polyethylene Glycols
  • Doxorubicin