CspR has been characterized recently as a cold-shock RNA-binding protein in Enterococcus faecalis, a natural member of the gastro-intestinal tract capable of switching from a commensal relationship with the host to an important nosocomial pathogen. In addition to its involvement in the cold-shock response, CspR also plays a role in the long-term survival and virulence of E. faecalis. In the present study, we demonstrated that anti-CspR immune rabbit serum protected larvae of Galleria mellonella against a lethal challenge of the WT strain. These results suggested that CspR might have a surface location. This hypothesis was verified by Western blot that showed detection of CspR in the total as well as in the surface protein fraction. In addition, identification of surface polypeptides by proteolytic shaving of intact bacterial cells followed by liquid chromatography-MS-MS revealed that cold-shock proteins (EF1367, EF2939 and CspR) were present on the cell surface. Lastly, anti-CspR immune rabbit serum was used for immunolabelling and detected with colloidal gold-labelled goat anti-rabbit IgG in order to determine the immunolocalization of CspR on E. faecalis WT strain. Electron microscopy images confirmed that the cold-shock protein RNA-binding protein CspR was present in both cytoplasmic and surface parts of the cell. These data strongly suggest that CspR, in addition to being located intracellularly, is also present in the extracellular protein fraction of the cells and has important functions in the infection process of Galleria larvae.