Cyclopentadienyl end-capped poly(3-hexylthiophene) was employed to fabricate conductive surface tethered polymer brushes via a facile route based on cyclopentadiene-maleimide Diels-Alder ligation. The efficient nature of the Diels-Alder ligation was further combined with a biomimetic polydopamine-assisted functionalization of surfaces, making it an access route of choice for P3HT surface immobilization.