Genetic diversity and geographic population structure of bovine Neospora caninum determined by microsatellite genotyping analysis

PLoS One. 2013 Aug 6;8(8):e72678. doi: 10.1371/journal.pone.0072678. Print 2013.

Abstract

The cyst-forming protozoan parasite Neosporacaninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N. caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N. caninum, which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N. caninum-derived reference isolates from around the world and 96 N. caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N. caninum. Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N. caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F(ST). Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N. caninum MLGs in cattle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Argentina / epidemiology
  • Cattle / parasitology*
  • Cattle Diseases / epidemiology
  • Cattle Diseases / parasitology
  • Coccidiosis / epidemiology
  • Coccidiosis / parasitology*
  • DNA, Protozoan / analysis
  • Genetic Variation*
  • Genotyping Techniques
  • Geography
  • Germany / epidemiology
  • Microsatellite Repeats / genetics*
  • Neospora / genetics*
  • Neospora / isolation & purification
  • Scotland / epidemiology
  • Sheep / parasitology
  • Sheep Diseases / epidemiology
  • Sheep Diseases / parasitology
  • Spain / epidemiology

Substances

  • DNA, Protozoan

Grants and funding

This work was funded by the Spanish Ministry of Economy and Competitiveness (Ref. AGL2010-22191/GAN). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.