Phlorizin pretreatment reduces acute renal toxicity in a mouse model for diabetic nephropathy

J Biol Chem. 2013 Sep 20;288(38):27200-27207. doi: 10.1074/jbc.M113.469486. Epub 2013 Aug 11.

Abstract

Streptozotocin (STZ) is widely used as diabetogenic agent in animal models for diabetic nephropathy (DN). However, it is also directly cytotoxic to kidneys, making it difficult to distinguish between DN-related and STZ-induced nephropathy. Therefore, an improved protocol to generate mice for DN studies, with a quick and robust achievement of the diabetic state, without direct kidney toxicity is required. To investigate the mechanism leading to STZ-induced nephropathy, kidney damage was induced with a high dose of STZ. This resulted in delayed gastric emptying, at least partially caused by impaired desacyl ghrelin clearance. STZ uptake in the kidneys is to a large extent mediated by the sodium/glucose cotransporters (Sglts) because the Sglt inhibitor phlorizin could reduce STZ uptake in the kidneys. Consequently, the direct toxic effects in the kidney and the gastric dilatation were resolved without interfering with the β-cell toxicity. Furthermore, pancreatic STZ uptake was increased, hereby decreasing the threshold for β-cell toxicity, allowing for single low non-nephrotoxic STZ doses (70 mg/kg). In conclusion, this study provides novel insights into the mechanism of STZ toxicity in kidneys and suggests a more efficient regime to induce DN with little or no toxic side effects.

Keywords: Diabetes; Diabetic Nephropathy; Gastric Dilatation; Glucose; Glucose Transport; Kidney; Mouse; Phlorizin; Sglt; Streptozotocin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / adverse effects
  • Antibiotics, Antineoplastic / pharmacokinetics
  • Antibiotics, Antineoplastic / pharmacology
  • Diabetes Mellitus, Experimental / chemically induced
  • Diabetes Mellitus, Experimental / metabolism
  • Diabetes Mellitus, Experimental / pathology
  • Diabetic Nephropathies / chemically induced
  • Diabetic Nephropathies / metabolism
  • Diabetic Nephropathies / pathology
  • Diabetic Nephropathies / prevention & control*
  • Dose-Response Relationship, Drug
  • Insulin-Secreting Cells / metabolism*
  • Insulin-Secreting Cells / pathology
  • Kidney / injuries
  • Kidney / metabolism*
  • Kidney / pathology
  • Male
  • Mice
  • Phlorhizin / pharmacology*
  • Sodium-Glucose Transporter 1 / antagonists & inhibitors*
  • Sodium-Glucose Transporter 1 / metabolism
  • Streptozocin / adverse effects
  • Streptozocin / pharmacokinetics
  • Streptozocin / pharmacology

Substances

  • Antibiotics, Antineoplastic
  • Sodium-Glucose Transporter 1
  • Streptozocin
  • Phlorhizin