Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver

Dis Model Mech. 2013 Nov;6(6):1470-6. doi: 10.1242/dmm.010470. Epub 2013 Aug 7.

Abstract

Tamoxifen-inducible Cre-mediated manipulation of animal genomes has achieved wide acceptance over the last decade, with numerous important studies heavily relying on this technique. Recently, a number of groups have reported transient complications of using this protocol in the heart. In the present study we observed a previously unreported focal fibrosis and depressed left-ventricular function in tamoxifen-treated αMHC-MerCreMer-positive animals in a Tβ4shRNAflox × αMHC-MerCreMer cross at 6-7 weeks following standard tamoxifen treatment, regardless of the presence of the floxed transgene. The phenotype was reproduced by treating mice from the original αMHC-MerCreMer strain with tamoxifen. In the acute phase after tamoxifen treatment, cell infiltration into the myocardium was accompanied by increased expression of pro-inflammatory cytokines (IL-1β, IL-6, TNFα, IFNγ, Ccl2) and markers of hypertrophy (ANF, BNP, Col3a1). These observations highlight the requirement for including tamoxifen-treated MerCreMer littermate controls to avert misinterpretation of conditional mutant phenotypes. A survey of the field as well as the protocols presented here suggests that controlling the parameters of tamoxifen delivery is important in avoiding the chronic MerCreMer-mediated cardiac phenotype reported here.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Integrases / metabolism*
  • Mice
  • Myocardium / enzymology*

Substances

  • Cre recombinase
  • Integrases