Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing

Sci Rep. 2013:3:2376. doi: 10.1038/srep02376.

Abstract

Our ability to precisely and efficiently edit mammalian and plant genomes has been significantly improved in recent years, partially due to increasing use of designer nucleases that recognize a pre-determined DNA sequence, make a specific DNA double-strand break, and stimulate gene targeting. A pair of zinc finger nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs) that recognize two adjacent unique DNA sequences dimerize through the fused FokI nuclease domain and cut in the middle of target DNA sequences. We report here that increasing the length of recognition DNA sequences by TALENs or ZFNs does not necessarily translate to a higher efficiency or specificity. We also discover that one subunit of ZFNs and one subunit of TALENs can form a pair of hybrid nucleases with expanded specificity at two diverse targets, and stimulate gene targeting in multiple cell types including human induced pluripotent stem (iPS) cells with improved efficiency.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cells, Cultured
  • Deoxyribonucleases / genetics*
  • Dimerization
  • Enzyme Activation
  • Gene Targeting / methods*
  • Genome, Human / genetics*
  • Humans
  • Pluripotent Stem Cells / physiology*
  • Viral Proteins / genetics*
  • Zinc Fingers / genetics*

Substances

  • Viral Proteins
  • transcription activator protein C1, Enterobacteria phage P22
  • Deoxyribonucleases