The loss of sustained Ca(2+) signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy

Am J Physiol Heart Circ Physiol. 2013 Oct 1;305(7):H969-79. doi: 10.1152/ajpheart.00250.2013. Epub 2013 Jul 26.

Abstract

Approximately 8% of pregnancies are complicated by preeclampsia (PE), a hypertensive condition characterized by widespread endothelial dysfunction. Reduced nitric oxide (NO) output in PE subjects has been inferred but not directly measured, and there is little understanding of why this occurs. To address this we have used direct imaging of changes in intracellular Ca(2+) concentration ([Ca(2+)]i) and NO in umbilical vein endothelium of normal and PE subjects that is still intact and on the vessel luminal surface. This was achieved by dissection and preloading with fura 2 and DAF-2 imaging dyes, respectively, before subsequent challenge with ATP (100 μM, 30 min). As a control to reveal the content of active endothelial nitric oxide synthase (eNOS) per vessel segment, results were compared with a maximal stimulus with ionomycin (5 μM, 30 min). We show for the first time that normal umbilical vein endothelial cells respond to ATP with sustained bursting that parallels sustained NO output. Furthermore, in subjects with PE, a failure of sustained [Ca(2+)]i bursting occurs in response to ATP and is associated with blunted NO output. In contrast, NO responses to maximal [Ca(2+)]i elevation using ionomycin and the levels of eNOS protein are more similar between groups than the responses to ATP. When the endothelial cells from PE subjects are isolated and allowed to recover in culture, they regain the ability under fura 2 imaging to show multiple [Ca(2+)]i bursts otherwise seen in the cells from normal subjects. Thus novel clinical therapy aimed at restoring function in vivo may be possible.

Keywords: calcium ion; endothelium; hypertension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adolescent
  • Adult
  • Calcium Ionophores / pharmacology
  • Calcium Signaling* / drug effects
  • Case-Control Studies
  • Cells, Cultured
  • Down-Regulation
  • Female
  • Fluorescent Dyes
  • Fura-2 / analogs & derivatives
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism*
  • Humans
  • Ionomycin / pharmacology
  • Microscopy, Fluorescence
  • Molecular Imaging / methods
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type III / metabolism
  • Pre-Eclampsia / metabolism*
  • Pre-Eclampsia / physiopathology
  • Pre-Eclampsia / therapy
  • Pregnancy
  • Time Factors
  • Young Adult

Substances

  • Calcium Ionophores
  • Fluorescent Dyes
  • fura-2-am
  • Nitric Oxide
  • Ionomycin
  • Adenosine Triphosphate
  • NOS3 protein, human
  • Nitric Oxide Synthase Type III
  • Fura-2