Crackling noise is a common feature in many systems that are pushed slowly, the most familiar instance of which is the sound made by a sheet of paper when crumpled. In percolation and regular aggregation, clusters of any size merge until a giant component dominates the entire system. Here we establish 'fractional percolation', in which the coalescence of clusters that substantially differ in size is systematically suppressed. We identify and study percolation models that exhibit multiple jumps in the order parameter where the position and magnitude of the jumps are randomly distributed--characteristic of crackling noise. This enables us to express crackling noise as a result of the simple concept of fractional percolation. In particular, the framework allows us to link percolation with phenomena exhibiting non-self-averaging and power law fluctuations such as Barkhausen noise in ferromagnets.