Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing

J Biomech. 2013 Aug 9;46(12):2024-31. doi: 10.1016/j.jbiomech.2013.06.007. Epub 2013 Jul 9.

Abstract

Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations.

Keywords: Articular cartilage; Automatic threshold selection; Chondrocytes; Fluorescence laser scanning microscopy; Osteoarthritis; Photobleaching.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage, Articular / cytology
  • Cartilage, Articular / metabolism*
  • Cattle
  • Chondrocytes / cytology
  • Chondrocytes / metabolism*
  • Compressive Strength*
  • Microscopy, Fluorescence, Multiphoton*
  • Weight-Bearing / physiology