The effects of proteolysis on digestion and animal performance were studied using heat to inhibit proteolysis at ensiling. Alfalfa (Medicago sativa) was ensiled either after wilting for 24 h (control; C) or after heating (100 degrees C) in a crop dehydrator for 2 min (heated; H). In Exp. 1, eight wethers, cannulated in the rumen and duodenum, were given the silages to determine the effects of heat treatment of alfalfa on the digestion of silage. In Exp. 2, growing lambs had ad libitum access to the silages to determine the effects of heat treatment on intake, animal performance and body composition. Heat treatment inhibited protease activity; protein N accounted for 33.5 and 61.3% and ammonia N 15.5 and 5.1% of total N in C and H silages, respectively. Heat treatment reduced mean post-feeding ruminal ammonia N concentration (P less than .05), ruminal pH (P less than .05) and the acetate: propionate ratio (P less than .001) in ruminal fluid. Heat treatment increased duodenal flow of non-ammonia N (P less than .05) and amino acids (P less than .05), the amount of N absorbed (P less than .05) in the small plus large intestine and also increased the efficiency of microbial protein synthesis (P less than .05). In Exp. 2, although intake and gain were higher (P less than .001) for H-fed than for C-fed lambs, there were no differences (P greater than .05) in empty body composition. The results indicated that inhibition of proteolysis by heat treatment at ensiling can increase utilization of silage N within the rumen, increase voluntary intake and result in a higher rate of gain by lambs fed alfalfa silage.