Avoided quantum criticality and magnetoelastic coupling in BaFe(2-x)Ni(x)As2

Phys Rev Lett. 2013 Jun 21;110(25):257001. doi: 10.1103/PhysRevLett.110.257001. Epub 2013 Jun 18.

Abstract

We study the structural and magnetic orders in electron-doped BaFe(2-x)Ni(x)As2 by high-resolution synchrotron x-ray and neutron scatterings. Upon Ni doping x, the nearly simultaneous tetragonal-to-orthorhombic structural (T(s)) and antiferromagnetic (T(N)) phase transitions in BaFe2As2 are gradually suppressed and separated, resulting in T(s)>T(N) with increasing x, as was previously observed. However, the temperature separation between T(s) and T(N) decreases with increasing x for x≥0.065, tending toward a quantum bicritical point near optimal superconductivity at x≈0.1. The zero-temperature transition is preempted by the formation of a secondary incommensurate magnetic phase in the region 0.088≲x≲0.104, resulting in a finite value of T(N)≈T(c) + 10 K above the superconducting dome around x≈0.1. Our results imply an avoided quantum critical point, which is expected to strongly influence the properties of both the normal and superconducting states.