Broadening the heterologous cross-neutralizing antibody inducing ability of porcine reproductive and respiratory syndrome virus by breeding the GP4 or M genes

PLoS One. 2013 Jun 24;8(6):e66645. doi: 10.1371/journal.pone.0066645. Print 2013.

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens, which causes reproductive failure in sows and respiratory disease in piglets. A major hurdle to control PRRSV is the ineffectiveness of the current vaccines to confer protection against heterologous strains. Since both GP4 and M genes of PRRSV induce neutralizing antibodies, in this study we molecularly bred PRRSV through DNA shuffling of the GP4 and M genes, separately, from six genetically different strains of PRRSV in an attempt to identify chimeras with improved heterologous cross-neutralizing capability. The shuffled GP4 and M genes libraries were each cloned into the backbone of PRRSV strain VR2385 infectious clone pIR-VR2385-CA. Three GP4-shuffled chimeras and five M-shuffled chimeras, each representing sequences from all six parental strains, were selected and further characterized in vitro and in pigs. These eight chimeric viruses showed similar levels of replication with their backbone strain VR2385 both in vitro and in vivo, indicating that the DNA shuffling of GP4 and M genes did not significantly impair the replication ability of these chimeras. Cross-neutralization test revealed that the GP4-shuffled chimera GP4TS14 induced significantly higher cross-neutralizing antibodies against heterologous strains FL-12 and NADC20, and similarly that the M-shuffled chimera MTS57 also induced significantly higher levels of cross-neutralizing antibodies against heterologous strains MN184B and NADC20, when compared with their backbone parental strain VR2385 in infected pigs. The results suggest that DNA shuffling of the GP4 or M genes from different parental viruses can broaden the cross-neutralizing antibody-inducing ability of the chimeric viruses against heterologous PRRSV strains. The study has important implications for future development of a broadly protective vaccine against PRRSV.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antibodies, Neutralizing / genetics
  • Antibodies, Neutralizing / immunology*
  • Base Sequence
  • Cell Line
  • DNA, Complementary
  • Genes, Viral*
  • Molecular Sequence Data
  • Phylogeny
  • Porcine respiratory and reproductive syndrome virus / classification
  • Porcine respiratory and reproductive syndrome virus / immunology*
  • Sequence Homology, Nucleic Acid
  • Swine

Substances

  • Antibodies, Neutralizing
  • DNA, Complementary

Grants and funding

This project was supported in part by grants from the U.S. Department of Agriculture (USDA) Agriculture and Food Research Initiative (AFRI) program (USDA-NIFA-2011-67015-30165) and the USDA Porcine Reproductive and Respiratory Syndrome CAP (PRRS CAP) (USDA-NIFA-2008-55620-19132). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.