Biplane angiography for experimental validation of computational fluid dynamic models of blood flow in artificial lungs

ASAIO J. 2013 Jul-Aug;59(4):397-404. doi: 10.1097/MAT.0b013e3182937a80.

Abstract

This article presents an investigation into the validation of velocity fields obtained from computational fluid dynamic (CFD) models of flow through the membrane oxygenators using x-ray digital subtraction angiography (DSA). Computational fluid dynamic is a useful tool in characterizing artificial lung devices, but numerical results must be experimentally validated. We used DSA to visualize flow through a membrane oxygenator at 2 L/min using 37% glycerin at 22°C. A Siemens Artis Zee system acquired biplane x-ray images at 7.5 frames per second, after infusion of an iodinated contrast agent at a rate of 33 ml/s. A maximum cross-correlation (MCC) method was used to track the contrast perfusion through the fiber bundle. For the CFD simulations, the fiber bundle was treated as a single momentum sink according to the Ergun equation. Blood was modeled as a Newtonian fluid, with constant viscosity (3.3 cP) and density (1050 kg/m3). Although CFD results and experimental pressure measurements were in general agreement, the simulated 2 L/min perfusion did not reproduce the flow behavior seen in vitro. Simulated velocities in the fiber bundle were on average 42% lower than experimental values. These results indicate that it is insufficient to use only pressure measurements for validation of the flow field because pressure-validated CFD results can still significantly miscalculate the physical velocity field. We have shown that a clinical x-ray modality, together with a MCC tracking algorithm, can provide a nondestructive technique for acquiring experimental data useful for validation of the velocity field inside membrane oxygenators.

Publication types

  • Validation Study

MeSH terms

  • Angiography, Digital Subtraction*
  • Computer Simulation*
  • Models, Cardiovascular*
  • Models, Theoretical*
  • Oxygenators, Membrane*