A novel triple reuptake inhibitor with low potential of liabilities associated with cationic amphiphilic drug (CAD) was identified following an analysis of existing drugs. Low molecular weight (MW < ca. 300), low aromatic ring count (number = 1) and reduced lipophilicity (ClogP < 3.5) were hypothesized to be key factors to avoid the CAD associated liabilities (CYP2D6 inhibition, hERG inhibition and phospholipidosis). Based on the hypothesis, a series of piperidine compounds was designed with consideration of the common characteristic features of CNS drugs. Optimization of the side chain by adjusting overall lipophilicity suggested that incorporation of a methoxymethyl group could provide compounds with a balance of both potent reuptake inhibition and low liability potential. Compound (S)-3a showed a potent antidepressant-like effect in the mice tail suspension test (MED = 10 mg/kg, p.o.), proportional monoamine transporter occupancies and enhancement of monoamine concentrations in mouse prefrontal cortex.
Copyright © 2013 Elsevier Ltd. All rights reserved.