Graphene nanoelectrodes: fabrication and size-dependent electrochemistry

J Am Chem Soc. 2013 Jul 10;135(27):10073-80. doi: 10.1021/ja402456b. Epub 2013 Jun 26.

Abstract

The fabrication and electrochemistry of a new class of graphene electrodes are presented. Through high-temperature annealing of hydrazine-reduced graphene oxides followed by high-speed centrifugation and size-selected ultrafiltration, flakes of reduced graphene oxides (r-GOs) of nanometer and submicrometer dimensions, respectively, are obtained and separated from the larger ones. Using n-dodecanethiol-modified Au ultramicroelectrodes of appropriately small sizes, quick dipping in dilute suspensions of these small r-GOs allows attachment of only a single flake on the thiol monolayer. The electrodes thus fabricated are used to study the heterogeneous electron transfer (ET) kinetics at r-GOs and the nanoscopic charge transport dynamics at electrochemical interfaces. The r-GOs are found to exhibit similarly high activity for electrochemical ET reactions to metal electrodes. Voltammetric analysis for the relatively slow ET reaction of Fe(CN)6(3-) reduction produces slightly higher ET rate constants at r-GOs of nanometer sizes than at large ones. These ET kinetic features are in accordance with the defect-dominant nature of the r-GOs and the increased defect density in the nanometer-sized flakes as revealed by Raman spectroscopic measurements. The voltammetric enhancement and inhibition for the reduction of Ru(NH3)6(3+) and Fe(CN)6(3-), respectively, at r-GO flakes of submicrometer and nanometer dimensions upon removal of supporting electrolyte are found to significantly deviate in magnitude from those predicted by the electroneutrality-based electromigration theory, which may evidence the increased penetration of the diffuse double layer into the mass transport layer at nanoscopic electrochemical interfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrochemical Techniques*
  • Electrodes
  • Graphite / chemistry*
  • Hydrazines / chemistry
  • Nanostructures / chemistry*
  • Oxides / chemistry
  • Particle Size
  • Surface Properties

Substances

  • Hydrazines
  • Oxides
  • hydrazine
  • Graphite