Domain-level identification of microbial cells or cell-like structures is crucial for investigating natural microbial communities and their ecological significance. By using micro-Fourier transform infrared (micro-FTIR) spectroscopy, we established a technical basis for the domain-level diagnosis and quantification of prokaryotic cell abundance in natural microbial communities. Various prokaryotic cultures (12 species of bacteria and 10 of archaea) were examined using micro-FTIR spectroscopic analysis. The aliphatic CH3 /CH2 absorbance ratios (R3/2 ) showed domain-specific signatures, possibly reflecting distinctive cellular lipid compositions. The signatures were preserved even after chemical cell fixation (formaldehyde) and nucleic acid staining (DAPI) processes - techniques that are essential in studying microbial ecology. The micro-FTIR technique was successfully applied for quantification of the bacteria/archaea abundance ratio in an active microbial mat community in a subsurface hot aquifer stream. We conclude that the micro-FTIR R3/2 measurement is both fast and effective for domain-level diagnosis and quantification of first-order prokaryotic community structures.
© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.