Knowledge representation of the role of phosphorylation is essential for the meaningful understanding of many biological processes. However, such a representation is challenging because proteins can exist in numerous phosphorylated forms with each one having its own characteristic protein-protein interactions (PPIs), functions and subcellular localization. In this article, we evaluate the current state of phosphorylation event curation and then present a bioinformatics framework for the annotation and representation of phosphorylated proteins and construction of phosphorylation networks that addresses some of the gaps in current curation efforts. The integrated approach involves (i) text mining guided by RLIMS-P, a tool that identifies phosphorylation-related information in scientific literature; (ii) data mining from curated PPI databases; (iii) protein form and complex representation using the Protein Ontology (PRO); (iv) functional annotation using the Gene Ontology (GO); and (v) network visualization and analysis with Cytoscape. We use this framework to study the spindle checkpoint, the process that monitors the assembly of the mitotic spindle and blocks cell cycle progression at metaphase until all chromosomes have made bipolar spindle attachments. The phosphorylation networks we construct, centered on the human checkpoint kinase BUB1B (BubR1) and its yeast counterpart MAD3, offer a unique view of the spindle checkpoint that emphasizes biologically relevant phosphorylated forms, phosphorylation-state-specific PPIs and kinase-substrate relationships. Our approach for constructing protein phosphorylation networks can be applied to any biological process that is affected by phosphorylation. Database URL: http://www.yeastgenome.org/