Assembling a primary cilium

Curr Opin Cell Biol. 2013 Aug;25(4):506-11. doi: 10.1016/j.ceb.2013.04.011. Epub 2013 Jun 7.

Abstract

Cilia are evolutionarily conserved, membrane-bound, microtubular projections emanating from the cell surface. They are assembled on virtually all cell types in the human body, with very few exceptions, and several recent reviews have covered the topic in great detail. The cilium is assembled from mature (mother) centrioles or basal bodies, which serve to nucleate growth of axonemes that give rise to two structurally distinct variants, motile and nonmotile cilia. Whereas motile cilia are typically found in large bundles and beat synchronously to generate fluid flow, primary cilia (with the exception of those found at the embryonic node) are generally immotile and are found as solitary organelles. Remarkably, until recently, the primary cilium was considered a vestigial organelle without apparent biological function. However, research over the past decade has established that the primary cilium is capable of transducing essential signaling information from the extracellular milieu. Defects in the cilium, and the structure from which it arises, the basal body, have been shown to cause a spectrum of diseases, ranging from developmental defects to obesity, diabetes, and cancer. Many of these diseases, or ciliopathies, are manifested as genetic syndromes, such as Joubert syndrome, Bardet-Biedel (BBS), Meckel-Gruber (MKS), and Nephronophthisis (NPHP), illustrating the importance of understanding cilium structure and function and the mechanisms required for its assembly. This review focuses primarily on recent advances in our understanding of the regulatory controls governing the assembly and maintenance of the primary cilium.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Centrioles / metabolism
  • Cilia / metabolism*
  • Ciliary Motility Disorders / pathology*
  • Humans
  • Microtubules / metabolism*
  • Signal Transduction