We examine different sampling lattices and their respective bandlimited spaces for reconstruction of irregularly sampled multidimensional images. Considering an irregularly sampled dataset, we demonstrate that the non-tensor-product bandlimited approximations corresponding to the body-centered cubic and face-centered cubic lattices provide a more accurate reconstruction than the tensor-product bandlimited approximation associated with the commonly-used Cartesian lattice. Our practical algorithm uses multidimensional sinc functions that are tailored to these lattices and a regularization scheme that provides a variational framework for efficient implementation. Using a number of synthetic and real data sets we record improvements in the accuracy of reconstruction in a practical setting.