Background and purpose: Brain enhancement on contrast-enhanced T1-weighted imaging (CET1-WI) after ischemic stroke is generally accepted as an indicator of the blood-brain barrier disruption. However, this phenomenon usually starts to become visible at the subacute phase. The purpose of this study was to evaluate the time-course profiles of K(trans), cerebral blood volume (vp), and CET1-WI with early detection of blood-brain barrier changes on K(trans) maps and their role for prediction of subsequent hemorrhagic transformation in acute middle cerebral arterial infarct.
Methods: Twenty-six patients with acute middle cerebral arterial stroke and early spontaneous reperfusion, whose MR images were obtained at predetermined stroke stages, were included. T2*-based MR perfusion-weighted images were acquired using the first-pass pharmacokinetic model to derive K(trans) and vp. Parenchymal enhancement observed on maps of K(trans), vp, and CET1-WI at each stage was compared. Association among these measurements and hemorrhagic transformation was analyzed.
Results: K(trans) map showed significantly higher parenchymal enhancement in ischemic parenchyma as compared with that of vp map and CET1-WI at early stroke stages (P<0.05). The increased K(trans) at acute stage was not associated with parenchymal enhancement in CET1-WI at the same stage. Parenchymal enhancement in CET1-WI started to occur at the late subacute stage and tended to be luxury reperfusion-dependent. Patients with hemorrhagic transformation showed higher mean K(trans) values as compared with patients without hemorrhagic transformation (P=0.02).
Conclusions: Postischemic brain enhancement on routine CET1-WI seems to be closely related to the luxury reperfusion at the late subacute stage and is not dependent on microvascular permeability changes at the acute stage.
Keywords: Ktrans; blood–brain barrier; parenchymal enhancement.